BSc in Mechanical Engineering

## Course Information Package

Course Unit Title | MECHANICS, HEAT AND WAVES WITH LAB | ||||||||

Course Unit Code | APHY111 | ||||||||

Course Unit Details | BSc Automotive Engineering (Required Courses) - BSc Mechanical Engineering (Required Courses) - BSc Civil Engineering (Required Courses) - BSc Quantity Surveying (Required Courses) - BSc Electrical Engineering (Required Courses) - BSc Computer Engineering (Required Courses) - | ||||||||

Number of ECTS credits allocated | 5 | ||||||||

Learning Outcomes of the course unit | By the end of the course, the students should be able to:- Describe with equations and graphically the motion along a straight line, the motion with constant acceleration and deceleration, and the motion due to gravity, distinguish and analyse motions to solve problems.
- Explain and apply the Newton’s Laws of motion to write the equations of motions, draw forces, solve problems by adding forces using free-body diagrams, and experimentally determine the acceleration due to gravity, investigate the Newton’s Second Law, the factors effecting kinetic friction and force equilibrium.
- Define and apply the concepts of work by a constant force, the kinetic energy, the potential energy due to the position and a spring, the work-energy principle, to solve problems with conservation of mechanical energy with/out dissipative forces, and experimentally determine the spring constant and investigate the conservation of mechanical energy.
- Identify the concept of linear momentum and its relation to forces, define the concept of impulse, explain the circumstances under which momentum is a conserved quantity, distinguish elastic and inelastic collisions, solve problems that involve elastic and inelastic collisions in one and two dimensions using the conservation of momentum and conservation of energy, and experimentally investigate the impulse and the conservation of linear momentum in elastic collisions.
- Describe simple harmonic motion, apply conservation of mechanical energy on problems with simple harmonic oscillators, determine under what circumstances a simple pendulum resembles simple harmonic motion, calculate and experimentally investigate its period and frequency.
- Define the concept of moments and the circumstances that a rigid body is in equilibrium, determine the rotation of a body about a fixed axis, calculate its torque, work, energy and power, and solve problems involving the principle of conservation of angular momentum.
- Describe with equations and graphically the wave motion, define the types of waves and the concept of superposition (overlapping waves), describe the characteristics of sound waves, define Doppler effect, use the abovementioned terms and concepts to solve associated problems.
- Describe the characteristics of ideal gas, determine under what circumstances the ideal gas law is valid, and solve associated problems using different temperature scales.
| ||||||||

Mode of Delivery | Face-to-face | ||||||||

Prerequisites | AMAT111 | Co-requisites | NONE | ||||||

Recommended optional program components | |||||||||

Course Contents |
| ||||||||

Recommended and/or required reading: | |||||||||

Textbooks | - D. Giancoli, Physics: Principles with Applications, Prentice Hall, 6th Edition,2005
| ||||||||

References | - David Halliday, Robert Resnick, Jearl Walker, Fundamentals of Physics, John Wiley & Son, 2001
- J. D. Cutnell, K. W. Johnson, Physics, John Wiley & Sons, 2005
- A. Giambattista, B. McCarthy Richardson and R. C. Richardson, College
| ||||||||

Planned learning activities and teaching methods | Lectures are delivered to the students by means of computer presentations including images, simulations, and videos. Lecture notes and presentations are available through the web for students to be used in combination with the textbooks.
Lectures begin with real-life observations challenging the students for explanation to guide them to the new physics concept and to investigate its principles and variables. Problems are presented and solved in the class while further problems are given for practice.
Lectures are supplemented by eight laboratory exercises to investigate, test, and verify the taught physics principles, laws and methodologies.
| ||||||||

Assessment methods and criteria |
| ||||||||

Language of instruction | English | ||||||||

Work placement(s) | NO |