
Course Title Systems Programming

Course Code ACSC372

Course Type Compulsory

Level BSc (Level 1)

Year / Semester 2nd / 3rd (Spring)

Teacher’s Name Chrysostomos Chrysostomou

ECTS 6 Lectures / week 2 Laboratories/week 2

Course Purpose This course aims to familiarize students with the concepts and principles
underlying the field of systems programming in the UNIX operating system
environment, and to enable students develop the skills related to
elementary and advanced UNIX shell commands, shell environment and
programming, system calls for Iinput/Output, process environment and
control, signals handling, inter-process communication and socket
programming. The role of systems programming in the UNIX environment
is emphasized through practical work carried out by developing system-
level programs in C programming language, performing various important
tasks using UNIX shell commands and formulating shell scripts using
structured shell programming.

Learning
Outcomes

By the end of the course, the students are expected to:

1. recall operating system concepts, and explain the basic elements of the

Kernel;

2. outline the structure and organization of the UNIX operating system;

3. implement shell configuration and programming, by performing tasks

using UNIX shell commands and formulating shell scripts using

structured shell programming;

4. examine and illustrate process creation, communication and

management by generating system calls, signals and interrupts;

5. recognize and implement low level File Input/Output;

6. design programs for inter-process communications;

7. develop client-server models with the aid of socket programming.

Prerequisites ACSC183, ACSC271 Co-requisites None

Course Content UNIX System Overview: UNIX operating system overview. Access to
the Resources of a Computer. Basic Elements of the Kernel. System
calls. Shell overview / Shell programming. UNIX history.

 UNIX commands: Elementary and advanced UNIX shell commands.
Directories structure, Files and directories manipulation, Files
examination, Input/Output streams, Files redirection, Pipes, Access
permissions, Regular expressions, Process control.

 Bash Shell Environment: Introduction to bash shell. Shells evolution.
Environment and variables. Shell initialization files. Shell variables.
Default global variables. User shell variables. Creating, deleting and
exporting variables. Built-in shell commands. Executing shell scripts.
Read user input data. Command line arguments. Special characters and
quotes. Printing in the shell.

 Bash Shell Programming: Exit status code. Conditional statement if.
Relational operators. File testing. Command line parameters. Logical
operators. Arithmetic expressions. The case statement. The while loop
and the until loop. Commands break and continue. The for loop. Shell
functions. Parameters in functions. Scope of function variables.
Initialization and processing of arrays. Advanced Shell Programming:
Debugging bash scripts, Catching signals, Pipes and devices,
Implementation of pipes with files, Implementation of pipes with two
variables, The File descriptor table, Standard in/out/err, Devices,
Input/Output redirection.

 File Input/Output: Error handling in C. Introduction to files and file
system. File types in UNIX. How files are stored (Partitions, i-Nodes,
Blocks). Example of finding a file using the i-nodes. File processing
operations. Standard I/O vs. System Calls (Low-level I/O). System calls
advantages and disadvantages. System calls for I/O.

 Process Environment & Control: Process Identifiers. Memory layout of
a process. Creation of processes (When it is needed, What is not
inherited). Environment Variables. Orphan process vs. Zombie process.
Processes and files. Waiting of processes. How to avoid zombie
processes.

 Processes and Signals: exec() Functions. System call system().
Signals Handling. Signals and Processes. Asynchronous avoidance of
Zombie processes using Signals. System call alarm(). Inter-process
signals. System call kill().

 Inter-Process Communication: Processes and Files. System calls
dup() & dup2(). Inter-Process Communication (IPC) – Introduction. IPC
with Pipes. System call pipe(). IPC with Named Pipes (FIFO). FIFOs in
the shell. FIFOs in C. Pipes vs. FIFO.

 Socket Programming: Socket definition. Ports. Port numbers
assignment. Socket domain families. Socket types. Client/Server TCP
connection. Basic server functions. Basic client functions. Byte-order
transformations. Socket descriptors. Socket creation. Socket address
formats, Associating addresses with sockets. Listening to incoming
connection requests. Accepting incoming connection requests.
Connection establishment. Data transfer. Closing the connection. IP
address conversions. More miscellaneous functions. Client/Server
Example.

 Laboratory Work: Develop system-level software in C programming
language, perform various important tasks using UNIX commands and
formulate shell scripts using structured shell programming.

Teaching
Methodology

Students are taught the course through lectures by means of computer
presentations. Lectures are supplemented with laboratory work and
homework that consist of simple and complex tasks performed using UNIX
shell commands, shell scripts formulated using structured shell

programming, and system-level programs in C programming language
developed, aiming to help students develop practical skills by illustrating
the systems programming concepts taught at lectures.

Lecture/Laboratory notes and presentations are available for students to
use in combination with the textbooks and references, through the
university’s e-learning platform.

Bibliography Textbook:

 Richard W. Stevens, Stephen A. Rago, Advanced Programming in the

UNIX Environment, Addison-Wesley, 3rd Ed., 2013

References:

 Kay Robins, Steven Robins, UNIX Systems Programming:

Communication, Concurrency, and Threads, Prentice Hall, 2nd Ed.,

2016

 William Stallings, Operating Systems: Internals and Design

Principles, Pearson, 9th Ed., 2018

 Notes on UNIX commands & system utilities, Bash shell programming,

and Socket Programming – all available on the university’s e-learning

platform

Assessment The assessment of the course includes one written test and a final written

exam with programmatically (using UNIX shell commands, structured shell

programming and C programs) problem-solving questions. Laboratory work

consists of practical problems aiming to help students understand and

illustrate the systems programming concepts taught at lectures, one lab

test and homework requiring students to develop system-level programs in

C programming language, perform various important tasks using UNIX

shell commands and formulate shell scripts using structured shell

programming.

The weights for each assessment component are:

 Lab Work and Homework: 15%

 Tests: 25%

 Final Exam: 60%

Language English

