
* The lecture hours become two and one hour is devoted for laboratories on specific weeks.

Course Title Software Engineering

Course Code ACSC383

Course Type BSc Computer Science: Required Course

Level BSc (Level 1)

Year / Semester 3rd year / 5th semester

Teacher’s Name Dr. Achilleas Achilleos

ECTS 6 Lectures /
week

3 Laboratories/week 1*

Course Purpose The aim of this course is to help students understand the basic
concepts of software engineering and enable them to critically think
and decide when to apply the different software process models,
techniques and tools to solve real world problems. The content of the
course covers principally the software engineering process models
(waterfall model, rapid prototyping model, agile development model)
and the key phases of the software engineering lifecycle
(requirements analysis, system design, implementation, validation,
evolution). The Unified Modelling Language is taught and applied as
the standard that supports modelling for the analysis and design of
object-oriented software systems.

Learning
Outcomes

Upon successful completion of the course, students will be able to:

 Describe the notion of software engineering and explain the need
for a systematic approach to development of software as a
product.

 Compare different software engineering lifecycle models: waterfall
model, rapid prototyping model, agile development model.

 Outline the key phases of the software development lifecycle: i.e.,
requirements analysis, design, implementation, validation and
evolution.

 Outline the steps and methods involved in requirements analysis,
specify and validate the needs in a given problem domain.

 Define the notion of system modelling and compare data-driven
modelling with event driven modelling.

 Outline and apply UML as de-facto standard for CASE working
with Use Case, Class, State, Collaboration and Sequence
diagrams for analysis and design of object-oriented software
systems.

 Describe and explain the nature of design as continuation of
analysis and apply specific methods and techniques to system
design, including architectural patterns and design patterns.

 Explain the direct relationship between design and implementation
and use patterns for the development of complex software
systems.

 Describe and outline the implementation and validation methods
and tools, as well as the different reuse levels: software reuse and

* The lecture hours become two and one hour is devoted for laboratories on specific weeks.

configuration management.

 Describe the concept of open source software development and
argue on the importance of software licensing.

Prerequisites ACSC223, ACSC382. Corequisites None.

Course Content 1. The Nature of Software Engineering (3 Weeks)

- Technology and Business processes, modelling software,
complexity of software, estimation of risks, roles and
responsibilities. Software Development Life Cycle:
Waterfall, Rational Unified Process, Agile process.
Prototypes. CASE tools and reverse engineering.

2. Requirements Engineering (2 Weeks)

- Requirements Definition. User and System Requirements.
Functional and non-functional requirements. Requirements
engineering processes. Requirements elicitation.
Requirements specification. Requirements validation.
Requirements change.

3. System Modelling (3 Weeks)

- System Modelling. UML: visual modelling language. UML
Diagram Types. Context models: operational context of a
system. Process Models: UML Activity Diagrams.
Interaction models: UML Use case and sequence
diagrams. Structural models: organization of a system.
UML Class Diagrams. Behavioral models: Data-Driven and
Event-Driven Modelling. UML Activity and State Diagrams.
Model-driven engineering: from models to code.

4. Architectural Design and Patterns (3 Weeks)

- Definition of Architectural design. Agility and Architecture.
Architectural design decisions. Architectural views.
Architectural patterns: MVC (Model-View-Controller)
patterns, Layered architecture Pattern, Repository Pattern,
Client Server Pattern, Pipe and Filter Pattern. Application
architectures. Application Types: Data processing,
Transaction processing, Event processing, Language
processing.

5. Design and Implementation (2 Weeks)

- Object-oriented design using the UML. Design Patterns:
The Observer Pattern. Implementation Issues. Validation
and Testing. Reuse Levels. Software Reuse. Configuration
Management. Host-Target Development. Integrated
Development Environments (IDEs). Open Source
Development. Software Licensing.

Teaching
Methodology

The course is structured principally around lectures that are delivered
to the students with the help of computer presentations. Furthermore,
the ArgoUML CASE tool is used to demonstrate to the students how
to engage with software engineering at a practical level though the
use of UML diagrams: class, use case, activity, statechart, sequence
and collaboration. This helps to motivate and help students to engage
in solving software engineering problems. The material of the course

* The lecture hours become two and one hour is devoted for laboratories on specific weeks.

is Lecture notes in the form of presentations and UML-based
diagrams that are available through the e-learning system. This
material is the main resource for students to use in their study, in
combination with the recommended textbooks and references.

The assessment of the course includes initially a midterm test and
assignments. Finally, the course assessment is completed through a
three-hours final exam at the end of the semester.

Bibliography Textbooks:

1. Software Engineering, 10th Edition, by Ian Sommerville (Author),

816 pages, Publisher: Pearson; 10 edition (April 3, 2015),

Language: English, ISBN-10: 0133943038, ISBN-13: 978-

0133943030.

References:

1. John Vlissides, Ralph Johnson, Richard Helm, Erich Gamma,

“Design Patterns: Elements of Reusable Object-Oriented

Software”, Publisher: Addison-Wesley Professional, Release Date:

October 1994, ISBN: 0201633612

2. M. Seidl, M. Scholz, C. Huemer, G. Kappel, “UML@Classroom: An

Introduction to Object-Oriented Modeling” (Undergraduate Topics

in Computer Science) 2015 Edition, Online Available:
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf

3. Textbook Resources: https://iansommerville.com/software-

engineering-book/.

4. UML.org Resources page – https://www.uml.org/resource-
hub.htm.

5. Homepage of ArgoUML – http://argouml.tigris.org/.

Assessment Midterm Test: 20%
 Assignments: 20%
 Final Exam: 60%

Language English.

https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-12742-2.pdf
https://iansommerville.com/software-engineering-book/
https://iansommerville.com/software-engineering-book/
https://iansommerville.com/software-engineering-book/
https://iansommerville.com/software-engineering-book/
https://iansommerville.com/software-engineering-book/
https://www.uml.org/resource-hub.htm
https://www.uml.org/resource-hub.htm
https://www.uml.org/resource-hub.htm
http://argouml.tigris.org/

