
*One hour out of the three is normally devoted to laboratory-based programming exercises.

Course Title Software Reuse

Course Code WSS553

Course Type Specialization (Elective)

Level Master (2nd Cycle)

Year / Semester 2 or 3

Teacher’s Name Achilleas Achilleos, PhD

ECTS 10 Lectures /
week

3 Laboratories/week 0

Course Purpose The aim of this course is to provide students with critical
understanding of the technology, issues and challenges of software
reuse at various levels. Specific focus in the course is dedicated to
software reuse in web-based systems accessible via mobile devices.
The course will enable students to practice software reuse at various
levels, with different programming languages and on different
platforms. In specific, the use of Java and HTML5 technologies will
provide the capability to experience and practice software reuse on
both desktop and mobile platforms, as well as at different levels such
as object-oriented programming, component-based software
development, middleware- based development, WS*-stack services,
REST services and model- driven engineering. Finally, management
of code repositories is introduced at the last week. In overall, the
objective of the course is to enhance critical awareness, promote
practical thinking and reasoning to solve practical problems through
the reuse of software systems.

Learning
Outcomes

Upon successful completion of the course students will be able to:

 Understand the concepts, principles and methods of software
reuse and argue on the importance of software reuse in building
modern software systems.

 Outline and describe the different levels of software reuse: object-
oriented programming, component-based engineering,
middleware, WS*-stack services, REST services and model-driven
engineering.

 Identify, analyse and reuse open-source software tools in practice
and at different software reuse levels.

 Gain theoretical knowledge and analytical skills to develop
applications by employing reuse methods at code, component,
design and models levels.

 Distribute effectively the results of their work to other developers
using software repositories in order to promote software reuse.

 Describe and explain the concept of open-source software
development and argue on the importance of software licensing.

Prerequisites None. Corequisites None.

Course Content 1. Introduction to Software Reuse (2 Weeks).

*One hour out of the three is normally devoted to laboratory-based programming exercises.

- Software Reuse Key Concepts. Levels and Types of
Software Reuse. The Software Reuse Landscape.
Software Reuse Approaches. Reuse Benefits, Issues and
Economics.

2. Object Oriented Programming and Component Based
Software Engineering (2 Weeks).

- Revisiting key concepts of Object Oriented Programming
(OOP). Practical example of reuse through OOP. Reuse
through the Java Collections Framework. Introduction to
the principles and concepts of Component Based Software
Engineering (CBSE). JavaBeans: Software Reuse at the
level of CBSE. Practical example of reuse through
JavaBeans.

3. Design Patterns: Reusing Best Practices to Solve Common
Design Problems (4 Weeks).

- Design Principles and Patterns. Design Patterns:
Concepts and Types. Building Successful Mobile
Applications using Design Patterns.

4. Software Reuse via the notion of a Middleware (1 Week).

- Motivation, definition and the role of a middleware.
Examining a simple middleware architecture: RPC.
Challenges in middleware design. Example: HTML5
Context Middleware (H5CM).

5. Service Reusability (2 Weeks).

- Motivation, History and Concepts. The Web Service
Model. Web Service Standards - WS*-stack (WSDL,
SOAP, XML, UDDI). RESTful Services. REST Motivation,
Definition and Principles. REST Vocabulary and Concepts.
REST Vs. WS*- stack.

6. Model Driven Engineering (1 Week).

- Introduction to the notion of models reuse. Unified
Modelling Language and Domain Specific Modelling.
Model-driven engineering and MDA architecture. Models
transformation and code generators.

7. Software Repositories (1 Week).

- Definition. Reusing Software Assets. Requirements and
Advantages of a Software Repository. The Software
Repository Model. Main functions of a Software
Repository. Version Control Systems. Creating and
Managing a Software Repository. Open-Source Software
Development.
Software Licensing.

Teaching
Methodology

The methodology followed in this course is structured around lectures
and laboratory exercises, so that students gain theoretical knowledge
as well as practical skills. The taught part of course is delivered to the
students with the help of computer presentations. Presentations are
available through the e-learning system for students to use in
combination with the textbooks. Furthermore, theoretical principles
are explained by means of specific examples and solution of specific
problems using practical examples. The code for these software
reuse examples and exercises is also made available in the e-
learning system.

*One hour out of the three is normally devoted to laboratory-based programming exercises.

Lectures are supplemented with supervised computer laboratories,
which include demonstrations of taught concepts and experimentation
with related technologies to solve specific problems via exercises.
Hence, during laboratory sessions, students apply their gained
knowledge and identify the principles taught in the lecture sessions by
means of working on different tasks and solving domain-specific
problems. The course includes a midterm test that involves both
theoretical and critical thinking questions, as well as practical software
reuse and programming exercises. The midterm test is undertaken
using the e-learning system. Also, a course project is assigned to the
students since this is a practical-oriented course. Finally, the course
assessment is completed by means of a three-hours final exam at the
end of the semester.

Bibliography Textbooks:

1. Michel Ezran, Maurizio Morisio, Colin Tully, “Practical Software
Reuse” (Practitioner Series), Paperback: 216 pages, Publisher:
Springer; 1st edition (April 2, 2002), Language: English, ISBN-10:
1852335025, ISBN-13: 978-1852335021.

2. John Vlissides, Ralph Johnson, Richard Helm, Erich Gamma,
“Design Patterns: Elements of Reusable Object-Oriented
Software”, Publisher: Addison-Wesley Professional, Release Date:
October 1994, ISBN: 0201633612.

References:

1. “Why Software Reuse has Failed and How to Make It Work for
You”, Douglas C. Schmidt, Available Online: Link.

2. “Design patterns, the big picture, Part 1: Design pattern history
and classification”, Jeff Friesen, JavaWorld | Nov 21, 2012,
Available Online: Link.

3. “Design patterns, the big picture, Part 2: Gang-of-four classics
revisited”, Jeff Friesen, JavaWorld | Dec 26, 2012, Available
Online: Link.

4. “Design patterns, the big picture, Part 3: Beyond software design
patterns”, Jeff Friesen, JavaWorld | Nov 21, 2012, Available
Online: Link.

5. “Mobile UI Design Patterns – A Deeper Look At The Hottest Apps

Today”, Dominik Pacholczyk, UXPin, Available Online: Link.

Assessment Midterm Test: 20%
 Course Project: 30%
 Final Exam: 50%

Language English.

http://www1.cse.wustl.edu/~schmidt/reuse-lessons.html
http://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
http://www.javaworld.com/article/2078675/core-java/design-patterns--the-big-picture--part-2--gang-of-four-classics-revisited.html
http://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
https://s3.amazonaws.com/uxpin/uxpin_mobile_ui_design_patterns_2014.pdf

