

Course Title Programming Principles I

Course Code ACSC182

Course Type Compulsory

Level BSc (Level 1)

Year / Semester 1st (Fall)

Teacher’s Name Chrysostomos Chrysostomou

ECTS 5 Lectures / week 2 Laboratories/week 2

Course Purpose This course aims to introduce students to programming principles using the
C++ programming language with emphasis on the algorithmic design, and
program development through information representation, assignments and
operations, conditional and repetitive statements, composite data type
(arrays), and modularity (functions). The role of the C++ programming
language as a tool for solving simple and complex mathematical and
engineering problems is emphasized through practical work carried out.

Learning
Outcomes

By the end of the course, the students are expected to:

1. recognize the goals, capabilities and benefits of structured programming

and the basis of algorithmic thought;

2. examine written programs and identify their function and underlying
algorithmic logic;

3. demonstrate the ability to express algorithms in the syntax of an
imperative programming language (C++);

4. choose the appropriate data types, apply the correct operations, and form
the necessary statements;

5. analyze simple to complex problems, construct algorithms to
programmatically solve them, and formulate corresponding programs
using selective, iterative and sequential statements;

6. illustrate the ability to define and use one- and multi-dimensional arrays
programmatically;

7. recognize and illustrate the predefined functions, and user-defined
functions prototypes, definitions, and calls.

Prerequisites None Co-requisites None

Course Content • Introduction to Computer Programming: Computer Systems:
Hardware, Networks, Computer organization, Computer memory,
Computer software, Running a program, High-level languages, Low-level
languages, Compilers, Compiling and running a C++ program, Linkers.
Programming and Problem-Solving: Algorithms, Logic Diagrams,
Pseudocode, Flowcharts, Program design, Problem solving phase,
Implementation phase, Programming guidance, Programming steps,

Program creation, Object Oriented Programming (OOP), OOP
characteristics, Software life cycle.

• Programming Basics: A sample C++ program. Explanation of code.
Program layout (include directives, main function, variables, comments).
Running a C++ program. Testing and Debugging. Program errors.
Variables and Assignments: Identifiers, Keywords, Declaring variables,
Assignment statements, Initializing variables. Input and Output: Output
using cout, Include directives, Escape sequences, Formatting real
numbers, Showing decimal places, Basic cout manipulators, Input using
cin, Reading data from cin, Designing input and output. Data Types and
Expressions: Writing integer constants, Writing double constants, Other
number types, Integer types, Floating point types, Type char, char
constants, Reading character data, Type string, Type bool, Type
compatibilities (int - double, char - int, bool - int), Arithmetic, Results of
operators, Division of doubles, Division of integers, Integer remainders,
Arithmetic expressions, Operator shorthand.

• Conditional Statements: Flow of Control. Branch. Designing the branch.
Implementing the branch. if-else syntax. Boolean expressions. Relational
operators. if-else flow of control. Logical operators. Compound statements.
Program Style: Indenting, Comments, Constants. Using boolean
expressions. Evaluating boolean expressions. Truth tables. Order of
precedence. Precedence rules. Short-Circuit evaluation. Type bool and
Type int. bool return values. Multiway branches. Nested statements.
Nested if-else statements. Multi-way if-else statements. The switch-
statement: syntax, the controlling statement, the break statement, the
default statement, Switch-statements and menus. Blocks with local
variables. Statement blocks. Scope rule for nested blocks.

• Repetitive Statements: Loop statements. while-loop syntax, operation
and flow of control. do-while loop. Infinite loops. Prefix & Postfix
Increment/Decrement Operators. The for-statement. for/while loop
comparison. Which loop to use. The break-statement. Designing Loops.
Ending a loop: List headed by a size, Ask before iterating, List ended with
a sentinel value. Running out of input. General methods to control loops:
Count controlled loops, Exit on flag condition, Exit on flag caution. Nested
loops. Debugging loops. Fixing off-by-one error. Fixing infinite loops.
Tracing variables. Loop testing guidelines.

• Program Modularity: Top-down design. Predefined functions. Function
calls. Function call syntax. Function Libraries. Programmer-defined
functions. Function declaration. Function definition. The return statement.
The function call. Alternate declarations. Order of arguments. Function
definition syntax. Placing definitions. Procedural abstraction. Information
hiding. Formal parameter names. Local variables. Global constants and
variables. void-functions, Call-by-reference parameters, Mixed parameter
lists. Choosing parameter types.

• Composite Data types: Declaring an array. The array variables. Array
variable types. Indexed variable assignment. Loops and arrays. Constants
and arrays. Array declaration syntax. Arrays and memory. Array index out
of range. Out of range problems. Initializing arrays. Default values.
Uninitialized arrays. Arrays in functions. Arrays as function arguments.
Array parameter declaration. Function calls with arrays. Function call
details. Array formal parameters. Array argument details. Array parameter
considerations. Programming with arrays. Partially filled arrays. Searching

arrays. The search function. Sorting an array. The selection sort algorithm.
Sort algorithm development. Multi-dimensional arrays. Multi-dimensional
parameters.

• Laboratory Work: The role of the C++ programming language as a tool
for solving simple and complex mathematical and engineering problems is
emphasised through practical work carried out.

Teaching
Methodology

Students are taught the course through lectures by means of computer
presentations. Lectures are supplemented with laboratory work and
assignments that consist of simple and complex mathematical and
engineering problems aiming to help students develop practical skills by
illustrating the programming concepts taught at lectures.

Lecture/Laboratory notes and presentations are available for students to use
in combination with the textbooks, through the university’s e-learning
platform.

Bibliography Textbook:

• Walter Savitch, Problem Solving with C++, Pearson, 10th Edition, 2018

Reference:

• Paul J. Deitel, Harvey M. Deitel, C++ How to Program, Pearson, 10th

Edition, 2017

Assessment The assessment of the course includes two lab tests, one written test, five

online quizzes (that include multiple-choice and/or True/False questions), and

a final written exam with programmatically problem-solving questions.

Laboratory work consists of practical problems aiming to help students

understand and illustrate the programming concepts taught at lectures, and

assignments requiring students to solve programmatically simple and

complex mathematical and engineering problems.

The weights for each assessment component are:

Assessment Weights: Partial Total

Continuous

Assessment

One Written Test 20%

60%

Two Lab Tests 20%

Two Lab Assignments 20%

Lab exercises 20%

Online short quizzes 20%

Continuous Assessment: 100%

Final Written Exam 40%

Language English

