
Course Title Programming Principles II

Course Code ACSC183

Course Type Compulsory

Level BSc (Level 1)

Year / Semester 1st , 2nd

Teacher’s Name Andreas Constantinides, PhD

ECTS 5 Lectures / week 2 Laboratories/week 2

Course Purpose This course aims to introduce students to more advance programming
principles using the C++ programming language with emphasis on good
programming practices, algorithmic design, error handling and effective
programming with the usage of libraries (such as the c-string, cctype,
cstdlib) and implementation of header files, I/O streams, the string class,
pointers, structures and classes. Major focus is given on the introduction to
students to Object-oriented programming principles and applications.

Learning
Outcomes

By the end of the course, students should be able to:

 Recognize the use of structures and arrays and apply them to
construct and manipulate programmatically composite data types.

 Develop programs that read and write from/to files and handle
strings.

 Show the ability to use pointers and dynamic data types in
programming exercises.

 Design medium size programs using a modular approach and apply
the use of functions for developing algorithmic units and their
communication through parameter passing and function returns.

 Examine the benefits and core concepts of object-oriented C++
programming, and develop simple programs using object-oriented
terminology.

Prerequisites ACSC182 Corequisites

Course Content
This course consists of the following chapters:

 Review of Programming Principles: Data and Algorithms. Variables,
operators and statements. Sequential, Selective and iterative processes.
Understanding complex code. Interacting with input and output.

 Using Composite Data Types: Limitations of built-in data types.
Mechanisms for constructing composite data types: Arrays and
Structures. Building complex data types. Combining arrays and
structures. Handling composite types. Efficiency considerations.
Composite data types in functions.

 Pointers and Dynamic Data: Understanding pointers and memory
addresses. Pointer syntax. Parameter Passing revisited.



 Pointers in Programmatic Development: Pointers and arrays.
Dynamic memory allocation. Memory allocation lifetime and memory
leaks. String handling.

 Persistent Storage: Files, file pointers and file objects. Reading and
writing methods. File manipulation.

 Modular Programming Revisited: Tackling larger programming tasks.
Dividing the problem into parts. Designing software solutions. Effects of
structures, pointers and dynamic content in functions. Breaking
programs into units. Use of header files and custom-made libraries.

 Combining Data and Algorithms – Introduction to Object-
Orientation: Introducing a new way of programming: functions as
members of ‘objects’. Key features of object-orientation: Classes,
objects, properties and methods. Objects and memory management.

 Laboratory Work: The role of the C++ programming language as a tool
for solving advanced mathematical and engineering problems is
emphasised through practical work carried out.

Teaching
Methodology

The course is structured around lectures (2 hours per week) and
laboratories (2 housr per week) as well as homeworks/assignemts,
laboratory exercises, practical exercises, demonstrations and individual
work. During the lectures, students are encouraged to participate in
discussions enabling the exchange of ideas and examples. Laboratory
exercises are handed to students and their solutions are discussed at
laboratory periods. Additional tutorial time at the end of each lecture is
provided to students as well as additional notes for each section of the
course and worksheets, which process in the lab or as homework.
Students are expected to demonstrate the necessary effort to become
confident with the different concepts and topics of the course.

Lecture notes and presentations are available through the web (e-learning

platform) for students to use in combination with the textbooks.

Furthermore, theoretical principles are explained by means of specific

examples and for solving specific problems using practical examples.

Students are also advised to use the subject’s textbook or reference books

for further reading and practice.

Bibliography Textbooks:

 Walter Savitch, Problem Solving with C++, Addison-Wesley, 7th Ed.,
2009, ISBN: 0-321-54940-6.References:

References:

 Harvey M. Deitel, Paul J. Deitel, C++ How to Program, Prentice
Hall, 7th Ed., 2010, ISBN: 0-136-11726-0.

Assessment
The Students are assessed via continuous assessment throughout the
duration of the Semester, which forms the Coursework grade and the final
written exam. The coursework and the final exam grades are weighted
40% and 60%, respectively, and compose the final grade of the course.

Various approaches are used for the continuous assessment of the
students, such as mid-term test, class participation and laboratory work,



homework and assignments. The assessment weight, date and time of
each type of continuous assessment is being set at the beginning of the
semester via the course outline. An indicative weighted continuous
assessment of the course is shown below:

 Mid-term Test (10% of total marks for

module)

 Participation Activities (Lab work)(10% of total marks for

module)

 Homework/Assignment (10% of total marks for

module)

 Lab Tests (10% of total marks for

module)

 One closed-book, 3-hours exam (60% of total marks for module

Students are prepared for final exam, by revision on the matter taught,
problem solving and concept testing. The final assessment of the students
is formative and summative and is assured to comply with the subject’s
expected learning outcomes and the quality of the course.

Language English


