,	
Course unit title:	Hydrodynamics and Hydraulics
Course unit code:	CE230
Type of course unit:	Compulsory
Level of course unit:	Bachelor (1st Cycle)
Year of study:	2
Semester when the unit is delivered:	4 (Spring)
Number of ECTS credits allocated :	5
Name of lecturer(s):	Dr. George Michaelides
Learning outcomes of the course unit:	1. Define basic terms and concepts such as density, specific weight, specific gravity, surface tension, viscosity, pressure, and compressibility.
	2. Differentiate among various basic fluid properties, atmospheric and gauge pressure.
	3. Describe the principles behind the measurement of pressure and the function of barometers.
	4. Understand the theory governing the flow (motion of fluids) and Bernoulli's Equation, and the variation of flow parameters in time and space.
	5. Solve problems pertaining to the variation of pressure, the equilibrium of a fluid with constant density and numerical problems that make use of the Bernoulli Equation principles.
	6. Calculate the hydrostatic thrust on submerged surfaces.
	7. Apply Archimedes principle of buoyancy and stability.
	8. Describe relationships and interconnections between various concepts involved in the Momentum Equation that refers to forces due to fluids in motion.
	9. Solve problems that utilize the principles of the Momentum Equation.
	10. Understand the geometry and efficiency of typical open channels.
	11. Use equations to calculate friction losses in pipes.
	12. Calculate major and minor (exit and entrance losses, contractions, bends, sudden enlargements) friction losses in pipes, flow characteristics in pipes-in-series and in pipes-in-parallel networks
Mode of delivery:	Face-to-face
Prerequisites:	APHY111 Co-requisites: None
Recommended optional program components:	None
Course contents:	Part A: Theory
	1 Properties of fluids
	2. Fluid statics
	3. Fluid motion
	4. Open Channels
	5. Flow in pipes; energy losses.
	6. Pipe networks:
	Single pipes and pipes in series
	Parallel pipes
	Interconnected reservoirs
	Quasi-steady flow
	8. Momentum Équation
	Part B: Laboratory work

	Lab Exercise 1: Rotary Viscometer
	Properties of Fluids
	 Density, Gravity, Specific Gravity, Viscosity
	 Measurement of Viscosity
	Lab Exercise 2: Buoyancy
	Pressure and Fluid Statics
	 Introduction to Fluid Statics
	 Hydrostatic Forces on Submerged Surfaces
	• Buoyancy and Stability
	Lab Exercise 3: Confined flows in water channels
	Fluid Kinematics
	 Fundamentals of Flow Visualisation Concernation of Mass
	• Conservation of Mass
	O The Demount Theorem
	Lab Exercise 4: Flow Rate measurement with a venturi rube
	 Flows in pipes Lowings and Turbulant Flows
	 Laminar and Turbulent Flows Laminar and Turbulent Flows in Pines
	 Elow Rate and Velocity Measurement
	Lab Exercise 5: Impact Force of a let Fluid
	Momentum Analysis of Flow Systems
	 Nomentum Analysis of Flow Systems Newton's Laws and Conservation of Momentum
	 Forces Acting on a Control Volume
	• The Linear Momentum Equation
Recommended	
and/or required	
reading:	
Textbooks:	Donald F. Young, Theodore H. Okiishi, Bruce Roy Munson, 2002.
	"Fundamentals of Fluid Mechanics". John Wiley & Sons; 4th edition.
References:	Clayton, T. Crowe, John A. Roberson, Donald F. Elger. 2004. "Engineering
	Fluid Mechanics". John Wiley & Sons Inc.
	• Frank White. 2002. "Fluid Mechanics". McGraw-Hill College.
Planned learning	The course will be presented through theoretical lectures in class, numerical problem-
activities and	solving sessions, and laboratory exercises. The lectures will present to the student
teaching methods:	the course content and allow for questions. The material will be presented using viewal aids (i.e. RowerPoint presentation slides, documentaries, etc.). The aim is to
	familiarize the student with the different and faster nace of presentation and also allow
	the instructor to present related material that would otherwise be very difficult to do
	The learning process will be enhanced with the application of theoretical concepts
	covered through in-class numerical examples, the requirement from students to
	tackle numerical exercises, and participate in small-group discussions that will seek
	to interconnect the theoretical backdrop with the numerical application of these. In-
	class problem-solving as well as homework exercises (mostly numerical) will allow
	students to hone their quantitative analysis skills in a controlled setting. A laboratory
	component for this course seeks to further elucidate theoretical concepts introduced
	in class. Besides from the notes taken by students in class, all of the course material
	will be made available through the class website which will be available through the
	during office hours or by appointment in order to provide pecessary guidance
Assessment	Coursework 50%
methods and criteria.	Einal Examination 50%
Language of	English
instruction:	
Work placement(s):	No