
ANNEX 2 – COURSE DESCRIPTION

Course Title Algorithms and Complexity

Course Code ACSC401

Course Type Compulsory

Level BSc (Level 1)

Year / Semester 4th (Fall)

Teacher’s Name Dr Savvas Pericleous

ECTS 6 Lectures / week 3 Laboratories/week -

Course Purpose
The aim of the course is to familiarize students with the concepts and the
principles of the design and analysis of algorithms and the evaluation of
their performance. We discuss the importance of the underlying data
structures towards developing correct and efficient algorithms for solving
computational problems and compare various paradigms for doing so.
Students will be introduced to basic notions of complexity theory that can
be used to classify problems and study examples of approximation
algorithms.

Learning
Outcomes

By the end of the course, students must be able to:

1. Introduce the notion of an algorithm for solving computational
problems, noting the existence of unsolvable problems.

2. Define the notion of time and space complexity and classify
functions by their growth rates.

3. Analyze the running time of various algorithms; employ in particular,
the Master Theorem for solving recurrences.

4. Describe and use general techniques, such as the Divide and
Conquer and the Dynamic Programming paradigms, for designing
correct and effective algorithms

5. Develop, evaluate and reason about the correctness and
performance, of sorting algorithms (Insertion Sort, Merge Sort,
Heapsort and Quick Sort), write programs to implement these and
prove lower bounds for sorting by comparison keys.

6. Analyze graph traversing algorithms (BFS/DFS), compare Kruskall’s
and Prim’s method for finding minimal spanning trees. Introduce
Dijkstra’s Single Source Shortest-path algorithm and compare with
Bellman-Ford algorithm. Understand Floyd–Warshall algorithm for
finding all pairs shortest paths and discuss Ford-Fulkerson
algorithm for solving the Maximum flow problem.

7. Explain the general notion of complexity classes, P and NP,
completeness and hardness, and the relationships between classes
by reduction. Compare a range of computational problems
according to their classification.

8. Study approximation algorithms for solving hard problems.

Prerequisites AMAT181, ACSC191, ACSC288 Corequisites None

Course Content Computability issues, need for axiomatic models of computations;
unsolvable problems and computers limitation

 Analysing Algorithms and Problems: Notion of an algorithm;
Principles and Examples; Time and space complexity; Classifying
functions by their growth rates.

 Algorithms design: Brute-force, Greedy methods, Divide and
Conquer paradigm, Dynamic Programming paradigm.

 Solving Recurrences: Substitution and Recursion Tree methods; the
Master Theorem for solving recurrences.

 Sorting: Selection and Insertion Sort; Heapsort, Merge-sort, Quick-
sort. Lower bounds for sorting by comparison keys.

 Searching Methods: Sequential, Binary Search, Binary Search Trees
(BST), Balanced BST (Red-Black, AVL), Hash tables.

 Graphs and Trees: Terminology and graph representation. Graph
traversing (Breath/Depth First Search). Kruskal’s and Prim’s
algorithms for Minimal Spanning Trees. Dijkstra’s and Bellman-Ford
methods for solving the Single Source Shortest-path problem (SSSP).
Floyd–Warshall algorithm for finding all pairs shortest paths (APSP).
Ford-Fulkerson algorithm for Maximum flow problem.

 Complexity theory: Classes P and NP, NP-Completeness and
Reducibility. Approximation algorithms for finding near-optimal
solutions in polynomial time for intractable problems.

Teaching
Methodology

Students are taught the course through lectures (3 hours per week). For
the delivery of the class material, power point presentations are primarily
used, along with the whiteboard. The lecture notes, consisting of slides
presented in class, the course outline and additional material, are made
available to the students through the University’s e-learning platform.
Students are also advised to use the subject’s textbook or reference books
for further reading and practice in solving related exercises. The theoretical
part of each lecture is accompanied with detailed solved examples on
which emphasis is given in the class. The solutions to these exercises, as
well as specimen solutions for all tests and assignments, are discussed
with students. Students are encouraged to make full use of the instructor’s
office hours (6 per week), where they can ask questions and further
discuss lecture material on a one-to-one basis.

Bibliography (a) Textbooks:

 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. (3ed Edition) The MIT Press, 2009

(b) References:

 Levitin A, The Design and Analysis of Algorithms, Pearson
International 3rd edition, 2012

 M. T. Goodrich and R. Tamassia, Algorithm Design and Applications,
1st edition Wiley, 2015

Assessment
The Students are assessed via continuous assessment throughout the
duration of the Semester, which forms the Coursework grade and the final
written exam. The coursework and the final exam grades are weighted

40% and 60%, respectively, and compose the final grade of the course.

The methods for the continuous assessment of the students, are primarily
mid-term written tests, and assignments, The assessment weight, date and
time of each type of continuous assessment is being set at the beginning
of the semester via the course outline. An indicative weighted continuous
assessment of the course coursework is shown below:

 Assignments: 25%
 Mid-Term written exams: 75%

Students are prepared for the final exam, by revision on the taught
material, problem solving and concept testing. The final assessment is
designed to comply with the subject’s expected learning outcomes.

Language English

