
Course Title Languages and Compilation

Course Code ACSC371

Course Type Elective

Level BSc (Level 1)

Year / Semester 3rd / 4th (Fall/Spring)

Teacher’s Name Stephania Loizidou, Chrysostomos Chrysostomou

ECTS 6 Lectures / week 3 Laboratories/week 0

Course Purpose This course aims to familiarize students with the concepts and principles
underlying the field of languages and compilation, and to enable students
develop the skills related to the theory and practice of compiler design. The
role of basic principles and techniques that form the construction of
compiler is emphasized through practical work carried out by designing,
implementing, and testing a compiler.

Learning
Outcomes

By the end of the course, the students are expected to:

1. outline the trends in programming languages and machine architecture

that are shaping compilers;

2. recall the relationship between compiler design and computer-science

theory;

3. examine, analyze and assess the basic principles and techniques that

form the construction of compiler;

4. identify the difficulties in developing modern compilers, describe and

evaluate the techniques used to support such features;

5. assess the theory and practice of compiler design;

6. design, construct, implement, and test/verify a compiler for a simple

programming language.

Prerequisites ACSC288, ACSC300,
ACSC382

Co-requisites None

Course Content  Introduction to Programming Languages: Why programming
languages? Why different languages? Main programming languages
paradigms. Goals and trade-offs. Domains of application. Comparison
of programming languages. Historical development of Programming
Languages.

 Introduction to Compiling:What is a compiler? Language processors.
High level overview of the structure of a typical compiler (the analysis-
synthesis model of compilation, Phases of a compiler: Lexical analysis,
Syntax analysis, Semantic analysis, Intermediate code generation,
Code optimization, Code generation, Symbol-table management, The
grouping of phases into passes, Compiler-construction tools). The
evolution of programming languages. The science of building a



compiler. Applications of compiler technology.

 Lexical Analysis: The role of the lexical analyzer. Lexical analysis
versus parsing. Tokens, patterns, and lexemes. Attributes for tokens.
Lexical errors. Input buffering. Alphabet, Languages, and Strings
definitions. Operations on languages (union, concatenation, kleene
closure, positive closure). Regular expressions. Regular definitions.
Transition diagrams. Finite automata (NFA, DFA). From regular
expressions to automata. The lexical-analyzer generator tool Lex.

 Syntax Analysis: The role of the parser. Syntax error handling. Error-
recovery strategies. Context-free grammars (Definition of terminals,
nonterminals, start symbol, and productions. Notational Conventions,
Derivations, Parse trees. Ambiguity. Verifying the language generated
by a grammar. Context-free grammars versus regular expressions).
Writing a grammar (Eliminating ambiguity. Elimination of left recursion.
Left factoring). Top-down parsing (Recursive-descent parsing. FIRST
and FOLLOW. LL(1) grammars. Nonrecursive predictive parsing. Error
recovery in predictive parsing). Bottom-up parsing (Reductions. Handle
pruning. Shift-reduce parsing. Conflicts during shift-reduce parsing).
LR(k) parsers (Items and the LR(0) automaton. The LR-parsing
algorithm. Constructing SLR-parsing tables. Viable prefixes). The
canonical-LR and LALR parsers. Constructing LALR parsing tables.
Using ambiguous grammars (precedence and associatively to resolve
conflicts. The “Dangling-Else” ambiguity. Error recovery in LR parsing).
Parser Generator tool yacc.

 Syntax-Directed Translation: Syntax-directed definition (SDD).
Inherited and synthesized attributes. Dependency graphs. “S-attributed”
and “L-attributed” classes of SDD’s. Applications of syntax-directed
translation (Construction of syntax trees. The structure of a Type).
Syntax-directed translation (SDT) schemes (Postfix translation
schemes, parser-stack implementation of postfix SDT’s, SDT’s with
actions inside productions, eliminating left recursion from SDT’s, SDT’s
for L-attributed definitions), Implementing L-attributed SDD’s.

 Type Checking: Rules for type checking. Static and dynamic checking
of types. Flow-of-control checks. Uniqueness checks. Name-related
checks. Type expressions. Error recovery. Type conversions.
Overloading of functions and operators.

 Intermediate-Code Generation: Intermediate languages. Variants of
syntax trees (Directed acyclic graphs). Three-Address code. Types of
three-address statements. Syntax-directed translation into three-
address code. Implementation of three-address statements.
Declarations. Control -flow translation of Boolean expressions. Short-
circuit code. Backpatching. Intermediate code for procedures.

 Code Generation: Issues in the design of a code generator. The target
language. Addresses in the target code. Basic blocks and flow graphs.
A simple code generator. Register allocation and assignment. Peephole
optimization.

 Code Optimization: Criteria for code-improving transformations.
Causes of redundancy. Global common subexpressions. Copy
propagation. Dead-code elimination. Code motion. Induction variables
and reduction in strength.



 Exception handling: The need for exception handling and abstraction
from error handling. Exception and error handling mechanisms.

Teaching
Methodology

Students are taught the course through lectures by means of computer
presentations. Lectures are supplemented with demonstration of useful
tools for generating lexical- and syntax-analyzers. Homework is provided
consisting of practical problems to help students familiarizing with the
theory and practice of compiler design. Central to the course is the project,
where students are required to design, implement, and test a compiler for a
simple programming language, aiming to help students develop practical
skills by illustrating the concepts taught at lectures.

Lecture/Coursework notes and presentations are available for students to
use in combination with the textbooks and references, through the
university’s e-learning platform.

Bibliography Textbook:

 A.V. Aho, M.S. Lam, R. Sethi and J.D. Ullman, Compilers: Principles,

Techniques, and Tools

- Pearson, 2nd Ed., 2007 [paper format]

- Pearson, 2nd Ed., 2013 [eText format]

References:

 R. Toal, R. Rivera, A. Schneider, and E. Choe, Programming Language

Explorations, Chapman and Hall/CRC, 1st Ed., 2016

 K. Cooper, and L. Torczon, Engineering: A Compiler, Morgan

Kaufmann, 2nd Ed., 2011

 D. Brown, J. Levine, T. Mason, lex & yacc, O’Reilly Media, 2nd Ed., 2012

 Notes/Manuals on Lexical-analyzer (lex/flex) and Parser (yacc/bison)

generator tools – all available on the university’s e-learning platform

Assessment The assessment of the course includes one written test and a final written

exam with problem-solving practical questions. Homework and project work

are provided to help students familiarizing with the theory and practice of

compiler design.

The weights for each assessment component are:

 Homework: 5%

 Project: 20%

 Test: 15%

 Final Exam: 60%

Language English


