Course Title	VLSI Design
Course Code	ACOE419
Course Type	Elective
Level	BSc (Level 1)
Year / Semester	4th (Spring)
Teacher's Name	Dr. Konstantinos Tatas
ECTS	6 Lectures /week 2 Laboratories / week 1
Course Purpose	The aim of the course is to introduce students to VLSI design and optimization.
	Starting with transistor-level as well as layout-level design of common as well as
	custom cells, students learn to evaluate alternative designs in terms of speed, area
	and power consumption, using simple yet effective models. They are also
	introduced to simulation using SPICE as well as IC testing concepts such as fault
	modeling.
Learning outcomes	1. Explain the function of nMOS an pMOS transistors.
	2. Design the transistor-level schematic and layout of digital CMOS circuits.
	3. Design CMOS VLSI circuits using a variety of EDA tools.
	4. Optimize circuits for performance, area and power consumption
	5. Describe the evolution of CMOS VLSI devices including 3D integration.
	6. Predict the behaviour of CMOS devices and cells of a given technology
	node.
Prerequisites	AEEE238, ACOE361 Co-requisites None
Course contents:	• Introduction to CMOS Design: basic layout, subsystem layout,
	and mask layout, CAD/CAE tools. CMOS inverter, NOR and NAND
	gates.
	MOS Transistor Theory: Review of MOS transistor (nmos /
	pmos), current-voltage characteristics, capacitance, CMOS Inverter
	voltage
	transfer characteristics noise margins CMOS gate sizing W//
	apport ratio
	CMOS Processing lechnology: Silicon Technology, Crystal
	growth through diffusion, ion implementation, oxidation,
	photolithography, metalization and packaging.
	• Performance: circuit fan-out, logical and electrical effort. Logical
	effort and its application for transistor sizing. Optimal number of
	stages in a circuit.
	Power consumption: Static and dynamic power consumption
	component. Design for low-power consumptions.

	Performance/power trade-offs
	Simulation of CMOS Circuits using SPICE
	• IC Testing: Fault modeling, SA-0 and SA-1 faults, scan registers,
	built-in-self-test
	More-than-Moore and Beyond Moore Technologies: 3D
	integration and alternatives to VLSI technology
Teaching	The course is structured in lectures that are conducted with the help of
Methodology	both computer presentations and traditional means. Practical examples
	and exercises are included in the lectures to enhance the material learning
	process. Student questions are addressed during the lecture, or privately
	after the lecture or during office hours. Open-ended questions are
	discussed in class or assigned as homework
	Lecture notes are available through the web for students to use in
	combination with the textbooks.
	Students are assessed continuously and their knowledge is checked
	through tests with their assessment weight, date and time being set at the
	beginning of the semester via the course outline
	Furthermore, individual design assignments are used to develop practical
	engineering skills.
	Laboratory experiments are carried out in small groups and lab reports are
	required two weeks after the laboratory class resulting in a cumulative
	mark. The first laboratory exercises are totally structured (cookbook) in
	order to familiarize the students with the equipment, while later exercises
	are less structured, allowing the student to create and evaluate their own
	designs and solutions.
Bibliography	Textbooks:
	 Weste and Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th edition, Addison Wesley, 2010.
	References
	 R. Baker, "CMOS Circuit Design, Layout, and Simulation", 2nd edition, Wiley, 2007.

Assessment	The final assessment of the students is formative and summative and is
	assured to comply with the subject's expected learning outcomes and the
	quality of the course. In order to continuously assess students, coursework
	weight is set at 40%, which comprises assignments, a mid-term exam and
	laboratory work assessment. Assignments range from simple problems to
	work out, to circuit design assignments that require demonstrate concept
	understanding as well as problem-solving skills. The assessment weight,
	date and time of each type of continuous assessment is being set at the
	beginning of the semester via the course outline. An indicative weighted
	continuous assessment of the course is shown below:
	Assignments 10%
	• Tests: 10%
	Laboratory Work: 20%
	Final Exam: 60%
Language	English