

ΔΙΠΑΕ ΦΟΡΕΑΣ ΔΙΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΗΣ ΑΝΩΤΕΡΗΣ ΕΚΠΑΙΔΕΥΣΗΣ CYQAA THE CYPRUS AGENCY OF QUALITY ASSURANCE AND ACCREDITATION IN HIGHER EDUCATION

AEEE433 - Discrete Time Control Systems

Course Title	Discrete Time Control Systems				
Course Code	AEEE433				
Course Type	Technical Elective				
Level	BSc (Level 1)				
Year / Semester	4 th				
Teacher's Name	Assoc. Prof. Marios Lestas				
ECTS	6 Lectures / week 3 Laboratories/week 0				
Course Purpose	The aim of the course is to familiarize students with the basic concepts and principles of digital feedback control system design, analyzing different stages of the design procedure: sampling and data reconstruction, performance characterization and controller design using state-space methods, frequency response methods and root locus.				
Learning	By the end of the course, students must be able to:				
Outcomes	1. Define the z-transform and outline its main properties.				
	2. Identify the main components of Discrete-Time control systems, exemplifying the processes of Quantization and Data Acquisition.				
	 Perform z-plane analysis in discrete-time control systems via Impulse Sampling and Data Hold, Convolution Integral Method, and reconstruction from sampled data. 				
	 Discretize continuous time state space representations of dynamical systems and apply state-space analysis and solve the discrete-time state space equations. 				
	 Evaluate the performance of Digital Controllers and Digital filters in discrete-time control systems in terms of their steady state and transient behaviour. 				
	Examine the stability of Discrete Time Systems using poles, Jurys Test and the Routh Hurwitz criterion.				
	 Design digital controllers using frequency response and root locus methods. 				
	 Evaluate the performance of discrete-time control systems by applying Controllability, Observability concepts. 				
	 Derive the Canonical forms of the state-space equations of discrete- time control systems. 				
	10. Design state feedback controllers for pole placement.				
	11. Derive discrete time implementations of continuous time filters and controllers				

ΔΙΠΑΕ ΦΟΡΕΑΣ ΔΙΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΗΣ ΑΝΩΤΕΡΗΣ ΕΚΠΑΙΔΕΥΣΗΣ CYQAA THE CYPRUS AGENCY OF QUALITY ASSURANCE AND ACCREDITATION IN HIGHER EDUCATION

			×	
Prerequisites	AEEE345, AMAT223	Corequisites	None	
Course Content	Introduction: Main Components of Digital Control Systems, Quantization and Data Acquisition.			
	The Z-transform: Definition, Properties.			
	Z-plane Analysis: Impulse Sampling and Data Hold, Convolution Integral Method, Reconstruction from sampled data, the discrete time transfer function.			
	State-space Analysis : Discretization of Continuous Time State Space Models, Solution of the discrete-time state space equations, Controllability, Observability, Realizations of Dynamical Systems in Canonical Forms.			
	Stability: Poles, Eigenvalues, Jurys test, Routh Hurwitz Criterion.			
	•	ment via State Fee	quency Response Methods, edback, Transformation of	
Teaching Methodology	Students are taught the course through lectures (3 hours per week) in classrooms or lectures theatres, by means of traditional tools or using computer demonstration.			
	Auditory exercises, where examples regarding matter represented at the lectures, are solved and further, questions related to particular open-ended topic issues are compiled by the students and answered, during the lecture or assigned as homework.			
	Topic notes are compiled by students, during the lecture which serve to cover the main issues under consideration and can also be downloaded from the e-learning platform or the lecturer's webpage. Students are also advised to use the subject's textbook or reference books for further reading and practice in solving related exercises. Tutorial problems are also submitted as homework and these are solved during lectures or privately during lecturer's office hours.			
	Furthermore, design projec literature search is encoura issue, gather relevant scien addressed the problem, imp results in written or orally. V examples and design proble activities of the lecturer or c	ged to identify a spec tific information abou plement to implement Vhere appropriate, ta ems are drawn from t	ific problem related to some t how others have the design and report the ught material as well as he recent research	
Bibliography	Prentice Hall 12 th Ed C.L. Philips, H.T. Na Analysis and Design (b) <u>References:</u> G.F. Franklin, J.P. F Dynamic Systems,	dition, 2011. agle, A. Chakraportty, gn, Pearson, 4 th Editio Powell and M. L. Work Pearson Prentice Ha	kman , Digital Control of	

ΔΙΠΑΕ ΦΟΡΕΑΣ ΔΙΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΗΣ ΑΝΩΤΕΡΗΣ ΕΚΠΑΙΔΕΥΣΗΣ CYQAA THE CYPRUS AGENCY OF QUALITY ASSURANCE AND ACCREDITATION IN HIGHER EDUCATION

	such as mid-term written exam, oral exam, quizzes, design assignments and design projects. The assessment weight, date and time of each type of continuous assessment is being set at the beginning of the semester via the course outline. An indicative weighted continuous assessment of the course is shown below: Assignments Homework Mid-Term written exams Mok Design Project Q0% Quizzes Q0% Students are prepared for final exam, by revision on the matter taught, problem solving and concept testing and are also trained to be able to deal with time constrains and revision timetable. The criteria considered for the assessment of each type of the continuous assessment and the final exam of the course are: (i) the comprehension of the fundamental concepts and theory of each topic, (ii) the application of the theory in solving related problems and (iii) the ability to apply the above knowledge in more complex design problems. The above criteria are		
Language	The final assessment of the students is formative and summative and is assured to comply with the subject's expected learning outcomes and the quality of the course English		