Course Title	Industrial Processes				
Course Code	OG403				
Course Type	Compulsory				
Level	BSc Level				
Year / Semester	4 th year / 7 th semester				
Teacher's Name	DrIng. Paris A. Fokaides				
ECTS	6	Lectures / week	2	Laboratories/we	ek 1
Course Purpose	Industrial processes course provides a thorough and balanced introduction to refinery engineering topics from basic concepts and unit operations to overall refinery units. Based on the fundamentals of thermodynamics and kinetics, the course develops the scientific background needed for an understanding of refinery operations. It also provides an in-depth description of major refinery processes and then assimilates an integrated refinery by focusing on the operational aspects necessary for enhancing performance.				
Learning Outcomes	 Elaborate the principles of mass, energy and momentum conservation Design a heat-exchanger for oil and gas processing Analyze the performance of a heat exchanger with the use of the log- mean temperature difference method and with the use of the effectiveness NTU method Select a heat exchanger for oil and gas applications Outline the refining processes Describe the composition of crude oils Explain the chemical catalytic and the thermal chemical conversion processes of crude oil Calculate the pseudo-components of petroleum fractions Define the thermophysical properties of petroleum fractions Describe the process of crude distillation Analyze the operation of crude oil desalting, and vacuum destilation 				
Prerequisites	ME 200 The ME 202 Flui	ermodynamics I d Mechanics I	С	Corequisites	
	ME 304 Hea	at Transfer Exchangers			
Course Content	 Types of heat exchangers The overall heat transfer coefficient Analysis of heat exchangers The log-mean temperature difference method The effectiveness-NTU method 				

	 Selection of heat exchanger for oil and gas applications 				
	2. Refining processes				
	 Physical separation processes 				
	 Chemical catalytic conversion processes 				
	- Thermal chemical conversion processes				
	- Refinery configuration				
	3. Refinery Feedstocks and Products				
	 Composition of crude oils 				
	- Products composition				
	 Physical property characterization data 				
	- Chemical analysis data				
	4. Thermophysical Properties of Petroleum Fractions				
	- Basic input data				
	- Basuda componente				
	- Pseudo-components				
	- Thermophysical properties calculation				
	 Calculation of enthalpy of petroleum fractions 				
	5. Crude Distillation				
	- Process description				
	 Operation of crude distillation units 				
	 Crude oil desalting 				
	 Vacuum distillation 				
	 Crude distillation material balance 				
	6. Laboratory Exercises				
	 Aspen Tutorials 01: Heat Exchangers 				
	 Aspen Tutorials 02: Heat Exchangers (2) 				
	- Aspen Tutorials 03: Simulation of physical separation processes				
	(spliter)				
	 Aspen Tutorials 04: Simulation of a distillation column 				
	- e-Sankey Charts: Mass and Energy Balances of selected refinery				
	processes (1)				
	- e-Sankey Charts: Mass and Energy Balances of selected refinery				
	processes (2)				
Teaching	The teaching methodology of this course will be based on lecturing,				
Methodology	demonstrating and collaborating.				
0,					
	- Lecture notes, comprising of the fundamentals of each module of the				
	course will be prepared and presented in class on a weekly basis. The				
	notes will introduce the major concepts and will focus on specific				
	learning outcomes of the course.				
	- Demonstration activities including the solution of worked examples in				
	class on a weekly basis, as well as laboratorial work will also be				
	employed For each fundamental concept at least one worked				
	example will be solved during lectures. The laboratory work will cover				
	all major topics of the course allowing the students to personally				
	relate to the presented knowledge				
	- Collaborating teaching through classroom discussion and debriofing				
	- Conaborating teaching through classroom discussion and debilening				
	will also be encouraged during lectures.				

	Besides from the notes taken by students in class, all of the course material will be made available through the class website and also through the eLearning platform. The instructor will also be available to students during office hours or by appointment in order to provide any necessary tutoring.				
Bibliography	Textbooks:				
	Cengel, Y. A., Cimbala, J.M., Turner, R.H. (2006). Fundamentals of thermal science. McGraw Hill Education.				
	Fahim, M.A., Al-Sahhaf, T.A., Elkilani, A.S. (2010), Fundamentals of Petroleum Refining. Elsevier.				
	Finlayson, B. A. (2012). Introduction to chemical engineering computing. John Wiley & Sons.				
Assessment	 Students will be assessed through: An assignment related to the laboratory exercises A midterm test at the 7th week of the course, examining the design of heat exchangers and the introduction to refinery processes A final test at the end of the semester, in which all material will be examined. 				
	The weights of the course assessment are as follows: Assignment: 20% Midterm Exams: 20% Final Exams: 60%				
Language	English				