
Course unit title: Introduction to Programming

Course unit code: AMDM182

Type of course unit: Required

Level of course unit: Bachelor (1st cycle)

Year of study: 1

Semester when the
unit is delivered:

1 (Fall)

Number of ECTS
credits allocated :

6

Learning outcomes
of the course unit:

1. Familiarize with main elements of a computer system, a computer program
and computer applications

2. Recognise the goals, capabilities and benefits of structured programming
and the basis of algorithmic thought.

3. Examine written programs and identify their function and underlying
algorithmic logic.

4. Demonstrate the ability to express elementary algorithms in the syntax of
an imperative programming language by using a programming environment
such as Alice + Java or Scratch.

5. Demonstrate the ability to apply correct operations and form the necessary
statements.

6. Analyse simple problems, construct algorithms to programmatically solve
them, and formulate corresponding programs using selective, iterative and
sequential statements.

7. Illustrate the ability to define and use arrays programmatically.

8. Recognize and illustrate the predefined functions, and user-defined
functions prototypes, definitions, and calls.

Mode of delivery: Face-to-face

Prerequisites: None Co-requisites: None

Recommended
optional program
components:

None

Course contents:
 Introduction to Computer Programming: Computer Systems: Hardware,

Networks, Computer organization, Computer memory, Computer software,
Running a program, High-level languages, Low-level languages, Compilers.
Programming and Problem-Solving: Algorithms, Logic Diagrams, Pseudocode,
Flowcharts, Program design, Problem solving phase, Implementation phase,
Programming guidance, Programming steps, Program creation, Object Oriented
Programming (OOP), OOP characteristics, Software life cycle.

 Programming Basics: A sample Java program. Explanation of code. Program
layout (include directives, main function, variables, comments). Running a Java
program. Testing and Debugging. Program errors. Variables and Assignments:
Identifiers, Keywords, Declaring variables, Assignment statements, Initializing
variables. Programming software: e.g., Alice or Scratch. Get familiar with the
environment and be able to execute simple statements and commands.

 Conditional Statements: Flow of Control. Branch. Designing the branch.
Implementing the branch. if-else syntax. Boolean expressions. Relational
operators. if-else flow of control. Logical operators. Compound statements.
Program Style: Indenting, Comments, Constants. Using boolean expressions.
Evaluating boolean expressions. Truth tables. Order of precedence. Precedence
rules. Short-Circuit evaluation. Type bool and Type int. bool return values.
Multiway branches. Nested statements. Nested if-else statements. Multi-way if-
else statements. The switch-statement: syntax, the controlling statement, the



break statement, the default statement, Switch-statements and menus. Blocks
with local variables. Statement blocks. Scope rule for nested blocks.

 Repetitive Statements: Loop statements. while-loop syntax, operation and flow
of control. do-while loop. Infinite loops. Prefix & Postfix Increment/Decrement
Operators. The for-statement. for/while loop comparison. Which loop to use. The
break-statement. Designing Loops. Ending a loop: List headed by a size, Ask
before iterating, List ended with a sentinel value. Running out of input. General
methods to control loops: Count controlled loops, Exit on flag condition, Exit on
flag caution. Nested loops. Debugging loops. Fixing Off by one errors. Fixing
infinite loops. Tracing variables. Loop testing guidelines.

 Program Modularity: Top-down design. Predefined functions. Function calls.
Function call syntax. Function Libraries. Programmer-defined functions. Function
declaration. Function definition. The return statement. The function call.
Alternate declarations. Order of arguments. Function definition syntax. Placing
definitions. Procedural abstraction. Information hiding. Formal parameter names.
Local variables. Global constants and variables. void-functions, Call-by-reference
parameters, Choosing parameter types.

 Composite Data types: Declaring an array. The array variables. Array variable
types. Indexed variable assignment. Loops and arrays. Constants and arrays.
Array declaration syntax. Arrays and memory. Array index out of range. Out of
range problems. Initializing arrays. Default values. Uninitialized arrays.
Programming with arrays. Searching arrays. The search function. Sorting an
array. The selection sort algorithm. Sort algorithm development.

 Laboratory Work: The role of a programming language as a tool for solving
simple and complex problems is emphasised through practical work carried out.

Recommended
and/or required
reading:
Textbooks: Dann, W.P. and Cooper, S. and Pausch, R.,Learning to Program with Alice,

Pearson Education, 2011

References: Paul M. Mullins and Michael Conlon. 2008. Engaging students in programming
fundamentals using alice 2.0. In Proceedings of the 9th ACM SIGITE conference on
Information technology education (SIGITE '08). ACM, New York, NY, USA, 81-88.

Paul Mullins, Deborah Whitfield, and Michael Conlon. 2009. Using Alice 2.0 as a
first language. J. Comput. Sci. Coll. 24, 3 (January 2009), 136-143.

Maloney, John; Hernández, Andrés; Rusk, Natalie; Eastmond, Evelyn; Brennan,
Karen; Millner, Amon; Rosenbaum, Eric; Silver, Jay; Silverman, Brian; Kafai,
Yasmin (November 2009). "Scratch: Programming for All". Communications of the
ACM 52 (11): 60–67.

Planned learning
activities and
teaching methods:

Students are taught the course through lectures by means of computer
presentations. Laboratory work consists of practical problems aiming to help
students understand and illustrate the programming concepts taught at lectures.
Homework requires students to solve programmatically simple problems.
Lecture/Laboratory notes and presentations are available through the web for
students to use in combination with the textbooks.

Assessment
methods and criteria:

 Lab Assignments: 20%

 Tests: 20%

 Final Exam: 60%
Language of
instruction:

English

Work placement(s): No

http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/fulltext
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/fulltext
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/fulltext
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/fulltext
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/fulltext
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/fulltext
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/fulltext

