Course Title	Fundamentals of Energy Engineering
Course Code	MEE500
Course Type	Compulsory
Level	Masters (2 nd Level)
Year / Semester	1 st year / Fall Semester
Teacher's Name	Dr. George Karagiorgis, Dr. Katerina Meresi
ECTS	10 Lectures / week 3 Laboratories/week 0
Course Purpose	The course purpose is for the students to develop a sound understanding of
	the theory and operation of Energy Technology Systems. Students will gain
	the ability to evaluate various Energy Systems and investigate variables that
	influence performance etc. Upon completion of this course, the students will
	be able to develop skills on analysing Heat Exchangers, Gas Turbines, Steam
	Turbines, Renewables ICE etc.
Learning	By the end of the course, students must be able to:
Outcomes	1. Describe the types and operation of energy technology systems in
	industrial and domestic applications, and select the most appropriate
	technology for specific energy requirements.
	2. Describe renewable energy sources which can be used for power
	generation and list the technologies which utilise renewable energy
	sources
	3. Use the principles of thermodynamics, combustion and emissions,
	heat transfer and fluid mechanics for the analysis of energy systems.
	4. Use thermodynamic data, construct graphs of thermodynamic cycles
	and carry out energy balance of gas turbines, steam turbines,
	combined cycle plants and internal combustion engines and
	turbomachinery of various types.
	5. Construct and explain performance graphs of gas turbines, steam
	turbines, combined cycle plants and internal combustion engines,
	turbomachinery and electric machines.
	6. Describe methodologies for analysis and design of energy technology
	systems. Apply methodologies for analysis of energy technology
	systems.
	7. Analyse the technologies involved in energy systems and specify the
	requirements for technology systems employed for energy
	applications

Prerequisites	Prior taught experience on energy engineering Corequisites None
	issues or instructor's approval
Course Content	1. Introductory aspects for energy technology systems
	- Principles of fluid mechanics, thermodynamics, combustion and
	emissions/pollution, and heat transfer.
	- Fuels (Heavy fuel oil, Natural Gas, Diesel and petrol) chemical
	composition and energy content.
	 Alternative sources of energy and applications.
	2. Furnaces, Boilers and Steam Generators
	- Fuel type utilisation, heat transfer characteristics and emissions
	produced.
	 Technical characteristics, design aspects, sizing and performance.
	- Types and applications of gas-fuelled, liquid-fuelled and solid-fuelled
	burners.
	- Industrial furnaces types for large process (cement), and
	reheating/refining systems.
	 Boilers and steam generators types, operation and performance.
	3. Heat exchangers
	 Heat exchangers types and applications.
	 Heat transfer phenomena and heat exchanger analysis.
	4. Gas Turbines and Steam Turbines
	 Gas turbine types, components and operation.
	- Basic processes in gas turbines (atmospheric air characteristics,
	compression, combustion and expansion).
	- Performance analysis of gas turbines, using simple analysis of an
	open-circuit gas turbine. Steam turbine types, components and
	operation. Basic processes in steam turbines (combustion, heat
	transfer, steam production, expansion and condensation).
	- Performance analysis of steam turbines, using simple analysis of
	superheat steam turbine power plant.
	 Combined-cycle power plants types, components and operation.
	- Basic processes in the combined-cycle power plants.
	 Performance analysis of a combined-cycle plant, using an open-circuit
	gas turbine, an interconnecting heat exchanger and a superheat steam
	turbine.
	5. Internal Combustion Engines

	- Engine types, perfromance factors and expressions for indicated
	power, brake power, torque, specific fuel consumption etc.
	- Spark-ignition (Otto) Internal Combustion Engines (ICE): two-stroke,
	four-stroke, ideal air cycle, real cycle, induction system, fuel injection
	systems, gas flow, air/fuel mixture preparation, ignition, combustion,
	knock, emissions formation (HC, NOx, CO).
	- Compression Ignition (Diesel) ICE: two-stroke, four-stroke, ideal air
	cycle, real cycle, induction system, fuel injection systems, fuel
	injection, gas flow swirl/squish, air/fuel mixture preparation, ignition
	delay, phases of combustion, knock, emissions formation (smoke,
	NOx).
	- Modern ICE: gasoline direct injection (GDI), stratified charge engines,
	turbocharging and intercooling, homogeneous charge compression
	ignition engines (HCCI), common-rail high-pressure injection system,
	hybrid engines.
	6. Turbomachinery
	 Performance curves and analysis of turbomachinery.
	 Design aspects of turbomachinery.
	 Fans and blowers types, operation and applications.
	 Compressors types, operation and applications.
	 Pumps types, operation and applications.
	7. Electric machines:
	 Fundamental principles of electromagnetism.
	- Electromechanical power conversion, development of torque and
	voltage.
	 Generators, motors and loads.
	- Torque-speed characteristics, basic equations, characteristic curves,
	power flow, efficiency and losses in electric machines.
	 Motors and generators types and applications.
	8. Other aspects of energy technology systems:
	- Energy storage systems types and applications (accumulators,
	capacitors, heat storage, flywheels).
	- Energy saving measures, thermal insulation, composite structures,
	thickness of insulation and calculations of heat transfer coefficients.
Teaching	The course is delivered to the students by means of lectures, conducted with
Methodology	the help of computer presentations. Possible visits at local power plants for

	demonstration of different types of gas turbines, steam turbines, combined-
	cycle power plants, internal combustion engines and electric machines.
	Lecture notes and presentations are available through the web for students
	to use in combination with the textbooks.
Bibliography	Textbook: Breeze, P. "Power Generation Technologies". Elsevier, 2005.
	References
	1. F.P. Incropera and D.P. DeWitt. "Fundamentals of Heat and Mass
	Transfer". John Wiley & Sons, 5th Edition, 2002.
	2. John B. Heywood. "Internal Combustion Engine Fundamentals".
	McGraw Hill Education, 1989.
	3. Rolf Kehlhofer, Rolf Bachmann, Henrik Nielsen, "Combined Cycle Gas
	& Steam Turbine Power Plants". PennWell Corp. Publishers, 3 rd edition,
	2009.
	4. H. I. H. Saravanamuttoo, G. F. C. Rogers, Henry Cohen. "Gas Turbine
	<i>Theory</i> ". Prentice Hall, 5 th edition, 2001.
	5. Moran, M. J. and Shapiro, H. W. " <i>Fundamentals of Engineering</i>
	<i>Thermodynamics</i> ". 6 th Edition, John Wiley and Sons. 2008.
	6. Poullikkas, A. "Introduction to power generation technologies". Nova
	Science Publications. 2010.
	7. R. I. Lewis. "Turbomachinery Performance Analysis". John Wiley &
	Sons Inc., 1996
	8. Stephen J. Chapman. " <i>Electric Machinery and Power System</i>
	Fundamentals". McGraw-Hill Education – Europe, 2001
	9. Theodore Wildi. "Electrical Machines, Drives and Power Systems".
	Pearson Higher Education, 2005
Assessment	Assignments 20%
	Midterm Exams 20%
	• Final Exam 60%
Language	English and Greek