Course Title	Energy Economics			
Course Code	MEEB501			
Course Type	Elective			
Level	Masters (2 nd Level)			
Year / Semester	1 st year/ 2 nd semester or 2 nd year/ 3 rd semester			
Teacher's Name	Dr. Michalis Menicou			
ECTS	10 Lectures / week 3 Laboratories/week 0			
Course Purpose	Energy engineering projects tend to be capital intensive with long gestation			
	and payback periods. As such, a thorough economic study prior to their			
	undertaking is of an outmost importance. Within this context, the purpose of			
	this course is to familiarize students with the main economic characteristics			
	of energy engineering projects coupled with an understanding of the			
	prevailing engineering economic analysis tools and best practices. By the end			
	of this course students should be able to use engineering economic tools and			
	principles to conduct a simple economic analysis of an energy project.			
Learning	By the end of the course, students must be able to:			
Outcomes	1. To understand the fundamentals of energy systems' economics and			
	to able to evaluate alternative modes of energy supply, considering			
	the challenges and the constraints of renewable and non-renewable			
	energy systems by appreciating the economic framework within which			
	decisions are made.			
	2. To address the issues of developing renewable energy systems in a			
	period of profound and rapid change of national and international			
	energy markets driven by processes of privatisation and liberalisation.			
	3. Understanding the principles of engineering economic analysis			
	4. Applying investment appraisal techniques for engineering and energy			
	related investments			
	5. Understand alternative methods of financing and their effect on			
	valuation			
	6. Understanding the element of risk/uncertainty in the range of			
	engineering and energy related decisions a company faces, and how			
	to measure its effect			
	7. Use Microsoft Excel [®] to structure an energy related economic decision			
	and address the element of Project Risk.			
Prerequisites	Prior taught experience on energy engineering Corequisites None			
	issues or instructor's approval			

Course Content	1.	Principles of Engineering Economics
	-	Time value of Money
	-	 Evaluating Business and Engineering Assets:
	-	Present-Worth Analysis
	-	- Rate of Return Analysis
	-	Project Cash Flow Analysis
	-	Project Cost Elements
	-	 Project cash flow activities
	-	- Effect of inflation
	-	 Cost of Capital and the capital asset pricing model (CAPM)
	-	- Project financing
	-	- Debt versus equity
	-	 Cost of capital with different sources of financing
	-	 Capital budgeting with different sources of financing
	-	- Handling Project Cash Flow Risk
	-	- Methods of describing Risk (Sensitivity Analysis, Scenario Analysis)
	-	- Including Risk in Investment evaluation (Probabilistic approach)
	-	 Investment strategies under Uncertainty (Real Options)
	-	Rate of Return Analysis: Use Microsoft Excel® to formulate investment
		decisions and evaluate their rate of return.
	-	Project Cash Flow Analysis: Use Microsoft Excel [®] to structure Project
		Cash Flows and estimate their Rate of Return.
	-	- Mean-variance optimization in Microsoft Excel [®] and construction of
		efficient frontiers
	-	- Project Uncertainty: Use Microsoft Excel® to conduct sensitivity
		analysis and scenario evaluation of particular projects' cash flows.
	-	- Use Microsoft Excel [®] to build scenario trees for investment decisions
		under uncertainty and valuation of options
	2.	Energy Economics
	-	- Energy Data and Energy Balance of a Country
	-	- Understanding and analyzing energy demand; energy demand at
		disaggregated level.
	-	- Energy Demand forecasting
	-	 Economic analysis of energy investments
	-	- Economics of fossil fuels;
	-	- Economics of Non-Renewable Resource supply

	- Economics of Electricity Supply
	 Economics of Renewable Energy Supply
	 International Oil Markets
	 Markets for Natural Gas
Teaching	Teaching methodology of this course comprises delivering lectures,
Methodology	laboratory demonstration (Microsoft $Excel^{\texttt{®}}$), and collaborative arguments. In
	detail:
	- Lectures will be delivered on a weekly basis addressing the course
	content on energy economics and engineering economic analysis.
	Lecture notes will be available to e-learning, coupled with indicative bibliography.
	- Laboratory demonstration will take place at computer labs to introduce
	students to the use of Microsoft Excel [®] to structure engineering economic analysis.
	- Last, but not least, collaborating teaching is to be achieved by
	students' presentations and group discussion.
Bibliography	Textbooks:
	1. Fundamentals of engineering Economics (International Edition), by Park
	Chan, Prentice Hall, 2 nd edition 2009.
	References
	PART A:
	1. Murray Barrie, Power Markets and Economics: Energy Costs, Trading,
	Emissions, Wiley Publishers, ISBN: 978-0-470-77966-8, 2009.
	2. , Energy Economics: Concepts, Issues, Markets and Governance,
	Springer Academic Publishers, ISBN 978-0-85729-267-4, 2011.
	PART B
	1. Engineering Economy, by William Sullivan, Elin Wicks, and Patrick
	Koelling, 14 th edition, 2009
	2. Principles of Corporate Finance, 9th edition, by Brealey A. R., Myers C.
	S. I
Assessment	Students are expected to be assessed through:
	- An individual or group exercise at the 5 th week of the course on Project
	Cash Flow Analysis
	- An individual Project at the 9 th week of the course on energy economic

	- An individual presentation at the 12 th week of the course on energy
	economic decisions
	- A final test at the end of the semester, in which all material will be
	examined.
	The weights of the course assessment are as follows:
	Final Exam: 50%
	Individual or small group exercises: 20%
	Project: 20%
	Presentation: 10%
Language	English and Greek