
Course Title Parallel Processing

Course Code ACOE401

Course Type Elective

Level Bachelor (1st Cycle)

Year / Semester 4th Year / 8th Semester

Teacher’s Name Prof Costas Kyriacou

ECTS 6 Lectures / week 3 Laboratories /
week

1

Course Purpose This course aims in providing the students with an in-depth understanding
of the parallel processing enabling technologies and system architectures
related to shared memory and distributed memory systems, as well as the
main parallel programming models employed in shared memory systems
(OpenMP), distributed memory systems (MPI) and GPU based systems
(CUDA).

Learning
Outcomes

1. Classify parallel architectures based on the Flynn’s classification and
propose other parameters that are essential for the classification of
modern parallel processing systems.

2. Justify the need and describe the methodologies employed for
synchronization and memory consistency and cache coherence in
shared memory systems.

3. Describe and compare the different types of interconnects employed in
parallel processing systems.

4. Outline and analyse the features of microarchitecture parallel systems
such as superscalar, VLIW, vector, multithreading, CMP multi-core and
tile processors.

5. Describe how the performance of a parallel system can be measured,
list possible sources for performance losses and propose ways to
improve the performance of a system.

6. Write efficient programs for message passing and shared memory
parallel processing platforms using MPI and OpenMP, as well as for
heterogeneous platforms using CUDA.

7. Outline the present developments in the field of parallel processing
and show familiarity with the forefront of the relevant knowledge.

Prerequisites ACOE301 and ACSC183 Co-requisite

Course Content Introduction to Parallel Processing: Historic evolution of parallel
processing. Motivation for parallel processing. Parallel processing
applications case studies.

 Parallel Computer Models and Systems: Classification of parallel
computer architectures, SIMD and MIMD systems. Shared address
space, message passing and data parallel processing. Networks of
Workstations, clusters, and MPP.

 Performance Metrics: Workloads and benchmarks, execution time,
throughput, speedup and efficiency. Latency tolerance techniques, load
balancing and data locality issues.

 Interconnection Networks: Communication performance, latency and
bandwidth. Interconnection organization, links, switches and
interconnection topologies. Switch design, routing and flow control.
High speed LANs. Board-to-Board communication and Networks-on-
Chip.

 Shared Memory Multiprocessors: The cache coherence problem,
snoop-based and directory based cache coherence. Synchronization
mechanisms, mutual exclusion, event and global synchronization.
Locks and Atomic operation. Memory consistency models and
implementation.

 Microarchitecture Parallelism: Levels of parallelism, DLP, ILP, TLP.
The temperature and power wall problem, clock skewing and soft
errors. Single-chip parallel processing architectures such as
multithreaded processors, CMP and multi-core processors, and tile
architectures.

 Heterogeneous Architectures: Hardware accelerators, graphics
processors (GPUs) and the CUDA programming model, threaded
dataflow architectures.

 Parallel Programming: The parallelization process, decomposition,
assignment, orchestration and load balancing. Message passing
programming using MPI, basic instructions, point to point
communication, collective communication operations and
synchronization issues. Performance issues in MPI. Shared memory
programming using OpenMP, parallel regions, worksharing, data
environment, and synchronization. Performance issues with OpenMP

Teaching
Methodology

The taught part of course is delivered to the students by means of lectures,
conducted with the help of both computer presentations. Practical
examples and exercises are included in the lectures to enhance the
material learning process. Lecture notes and presentations are available
through the web for students to use in combination with the textbooks.

Lectures are supplemented with laboratory work curried out on parallel
programming. During laboratory sessions, students develop, test, debug
and analyse programs in C using OpenMP and MPI.

Students are also expected to submit and present orally a literature review
group project on the current developments in the field of parallel
processing.

Bibliography Textbooks:

 Thomas Sterling, Matthew Anderson and Maciej Brodowicz, “High
Performance Computing: Modern Systems and Practices”, Morgan
Kaufmann, 2018
https://www.sciencedirect.com/book/9780124201583/high-
performance-computing

 Bertil Schmidt Jorge Gonzalez-Dominguez Christian Hundt Moritz
Schlarb, “Parallel Programming, Concepts and Practice”, Morgan
Kaufmann, 2017

https://www.sciencedirect.com/book/9780124201583/high-performance-computing
https://www.sciencedirect.com/book/9780124201583/high-performance-computing
https://www.sciencedirect.com/book/9780124201583/high-performance-computing
https://www.sciencedirect.com/book/9780124201583/high-performance-computing
https://www.sciencedirect.com/book/9780124201583/high-performance-computing

https://www.sciencedirect.com/book/9780128498903/parallel-
programming

References:

 Gérard Blanchet, Bertrand Dupouy, “Computer Architecture”, Wiley,
2015

 M. Quinn, "Parallel Programming in C with MPI and OpenMP",
McGraw Hill, 2004

Assessment Tests: 30%

 Laboratory Work: 20%

 Class Project/Literature Review 10%

 Final Exam 40%

Language English

https://www.sciencedirect.com/book/9780128498903/parallel-programming
https://www.sciencedirect.com/book/9780128498903/parallel-programming
https://www.sciencedirect.com/book/9780128498903/parallel-programming

