

Course Title	Random Variables and Stochastic Processes			
Course Code	AEE503			
Course Type	Technical Elective			
Level	MSc (Level 2)			
Year / Semester	1 ⁻ or 2			
Teacher's Name	Assoc. Prof. Marios Lestas			
ECTS	8 Lectures / week 3 Laboratories/week 0			
Course Purpose	The aim of the course is to familiarize students with the theory of probability, random variables and stochastic processes and use the theoretical foundations to analyze and solve practical problems in electrical engineering with reference to examples from the fields of communications and control.			
Learning Outcomes	By the end of the course, students must be able to:			
	 Recognize key concepts of set theory: Sample Spaces, Events, Sigma-fields. 			
	 Present the axiomatic definition of Probability and use it introduce the concepts of Conditional Probability, Total Probability and Independence. 			
	 Apply Bayes' theorem and examine applications related to communication over noisy channels. 			
	4. Define Random Variables and related concepts such as the Probability Distribution Function, the Probability Density Function, the Expected Value of a Random Variable, Conditional Expectations, Moments, Moment Generating Functions and Characteristic Functions.			
	 Recognize the univariate Normal (Guassian) probability density function and its significance in practical applications. 			
	 Analyze Functions of Random Variables with reference to concepts such as conditional and joint distributions and densities. 			
	 Recognize key concepts of Linear Algebra: Multiplication, Linear Dependence, Determinants, Eigenvalues, Eigenvectors, Positive Definite Matrices, Causal Factorization, Spectral Resolution. 			
	8. Define the Covariance and Correlation Matrices of Random Vectors and analyze Linear Transformation of Random Vectors.			
	9. Define Gaussian Functions, Gaussian Characteristic Functions, and the probability density function of a Gaussian random vector.			
	10. Perform Hypothesis Testing with second order information and investigate Correlation Detection in Additive Noise and Whitening,			
	11. Present Bayes decision theory and analyse applications such as			

AEEE503 - Random Variables and Stochastic Processes

1:1:

	minimization of probability of error, Likelihood ratio tests and Mean Square Estimation.				
	12. Define Stochastic Processes and identify key processes such as Wiener Process, Markov Process, Poisson Process				
	 Analyze applications related to random processes such as Modulation, Kalman Filtering Power Spectral Density and Queueing Theory. 				
Prerequisites	None	Corequisites	None		
Course Content	Introduction to Probabilit Events, Sigma-fields, Axion Conditional Probabilities, T and applications, Commun	bability, Joint Probabilities, bendence, Bayes' theorem			
	Random Variables: Definition of Random Variables, Probability distribution function, Probability density function, Conditional and joint distributions and densities, Functions of Random Variables, Expected Value of a Random Variable, Conditional Expectations, Moments, Joint Moments, Moment Generating Functions, Characteristic Functions.				
	Revision on Linear Algebra: Multiplication, Linear Dependence, Determinants, Eigenvalues, Eigenvectors, Positive Definite Matrices, Causal Factorization, Spectral Resolution.				
	Second Moment Descriptions: Covariance, Correlation, Linear Transformation of Random Vectors, the Simulation Problem, Gaussian Functions, Gaussian Characteristic Functions, Linear Transformations, The probability density function of a Gaussian random vector.				
	Applications using Second Order Information : Hypothesis Testing with second order information, Correlation Detection in Additive Noise, Whitening, Bayes decision theory, Minimization of probability of error, Likelihood ratio tests, Mean Square Estimation.				
	Stochastic Processes: De Random Processes, Phase Processes, Poisson Proces Kalman Filtering.	e Shift Keying, Wiene	r Process, Markov		
Teaching Methodology	Students are taught the co classrooms or lectures the computer demonstration.				
	Auditory exercises, where examples regarding matter represented at the lectures, are solved and further, questions related to particular open-ended topic issues are compiled by the students and answered, during the lecture or assigned as homework.				
	Topic notes are compiled to cover the main issues under from the e-learning platform advised to use the subject' and practice in solving rela- submitted as homework and during lecturer's office hou	er consideration and on n or the lecturer's well s textbook or reference ted exercises. Tutoria and these are solved du	can also be downloaded opage. Students are also ce books for further reading al problems are also		

	Furthermore, design projects may be assigned to the students, where literature search is encouraged to identify a specific problem related to some issue, gather relevant scientific information about how others have addressed the problem, implement to implement the design and report the results in written or orally. Where appropriate, taught material as well as examples and design problems are drawn from the recent research activities of the lecturer or other faculty members.		
Bibliography	 (a) <u>Textbooks:</u> Henry Stark, John W. Woods, Probability and Random Processes, Prentice Hall, 2002. Athanasios Papoulis, S. Unnikrishna Pillai, Probability, Random Variables and Stochastic Processes, McGraw-Hill Science, 2001. (b) <u>References:</u> Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering, Addison Wesley, 1994 Carl W. Helstrom, <i>Probability and Stochastic Processes for Engineers</i>, McMillan, 2nd Edition, 1991. 		
Assessment	The Students are assessed via continuous assessment throughout the duration of the Semester, which forms the Coursework grade and the final written exam. The coursework and the final exam grades are weighted 40% and 60%, respectively, and compose the final grade of the course. Various approaches are used for the continuous assessment of the students, such as mid-term written exam, oral exam, quizzes, design assignments and design projects. The assessment weight, date and time of each type of continuous assessment is being set at the beginning of the semester via the course outline. An indicative weighted continuous assessment of the course is shown below:		
	 assessment of the course is shown below: Assignments 10% Homework 10% Mid-Term written exams 40% Design Project 20% Quizzes 20% Students are prepared for final exam, by revision on the matter taug problem solving and concept testing and are also trained to be able to de with time constrains and revision timetable. The criteria considered for the assessment of each type of the continuo assessment and the final exam of the course are: (i) the comprehension the fundamental concepts and theory of each topic, (ii) the application of t theory in solving related problems and (iii) the ability to apply the abok knowledge in more complex design problems. The above criteria a weighted 30%, 40% and 30%, respectively. The final assessment of the students is formative and summative and assured to comply with the subject's expected learning outcomes and t quality of the course		
Language	English		