Course Title

Data Structures

Course Code

ACSC288

Course Type BSc Computer Science: Required Course
BSc Computer Engineering: Required Course
Level BSc (Level 1)

Year / Semester

2nd year / 3rd semester

Teacher's Name

Dr. Achilleas Achilleos

ECTS

5 Lectures / 2 Laboratories/wee | 2
week k

Course Purpose

The aim of this course is to provide students with an in-depth
understanding of the importance of data structures in the
development of programs, as well as strong familiarity with the
development and usage of such concepts. The concepts include
static and dynamic data structures, static and dynamic memory
allocation, linear data structures (array, linked lists, stacks, queues),
non-linear data structures (trees, binary trees, binary search trees,
heap trees), searching and sorting algorithms and basic overview of
algorithmic complexity. The course will focus on the acquisition of
practical programming skills using low-level concepts as well as
conceptual understanding of how such choices affect program
performance.

Learning
Outcomes

Upon successful completion of the course students will be able to:

¢ Recognize the limitations of static data structures, compare and
discuss the differences in memory allocation of static and dynamic
data.

e Construct programs using both static and dynamic memory
allocation.

o Describe linear data structures (lists — single/double linked,
circular, stacks and queues) and explain under which scenarios
should be used.

e Apply linear data structures programmatically to solve real
problems.

e Explain how tree data structures can be used, discriminate
between the different tree types (generic, binary) and identify
where they can be used.

o Evaluate traversal methods and be able to design and construct
core tree operations using recursive functions.

e Examine implementation approaches for special tree structures
such as priority queues.

e Describe data structure classes available in the C++ Standard
Template Library (STL) and apply them for solving relevant
problems.

o Develop the necessary conceptual understanding that would help




adapt to similar programmatic environments (e.g. Collections in
Java).

e Recognize the importance of algorithmic complexity and
understand complexity of basic algorithms and the concept of big
O notation.

e Select, experiment, and develop appropriate data structures and
algorithms for searching and sorting problems and judge the
advantages.

The above will be applied in practice using the C++ programming
language.

Prerequisites

ACSC183. Corequisites None.

Course Content

1. Data Types and representation wunder imperative
programming (1 Week)

- Abstract Data Types (ADT), data representation and data
storage. Static data types. Memory requirements and
implications. Data Types. Static and Dynamic Memory.
ADT Structure and Memory Allocation. Unions.

2. Dynamic Data and pointer programming (2 Weeks)

- Pointer programming — Pointers, Addresses and memory
management, Pointers as function arguments, Pointers
and Arrays. Multi-dimensional Arrays. Multi-dimensional vs
Pointer Arrays. Dynamic Data Structures.

3. Classes and the Standard Template Library (2 Weeks)

- Classes and Class Members. Constructors. Overloading
Constructors. Pointers to Classes. Templates for
Abstraction. The Standard Template Library (STL). STL —
Standard Containers. Construction of dynamic data
structures in C - new and delete operators. Exception
Handling.

4. Linear Abstract Data Types (4 Weeks)

- Non-Recursive Functions. Recursion. ADT List — The
Stack and Queue. Implementations and performance
considerations. Applications of stacks and queues. Linked
lists. List operations (append, remove, etc.).
Implementation of linked lists and performance issues.
Real Applications of Linked Lists. Types of linked lists:
circular linked lists, double linked lists.

5. Non-Linear Data Structures (4 Weeks)

- Understanding differences of Linear and Non-Linear Data
Structures. Trees: Implementation of generic trees and
applications. Operation on Trees. Tree Traversal Methods.
Binary trees and implementations. Special binary trees:
Binary search trees, Heaps.

Teaching
Methodology

The methodology used to conduct the course is structured mainly
around lectures and laboratory examples/exercises, so that students
gain theoretical knowledge as well as practical skills. The taught part
of course is delivered to the students with the help of computer
presentations. Furthermore, the principles are demonstrated by




means of specific examples that help students engage with solving
problems programmatically. Lecture notes in the form of presentations
and code are available through the e-learning system for students to
use in combination with the recommended textbooks and references.

Lectures are supplemented with computer laboratories that include
rigorous demonstrations of taught concepts and experimentation with
the C++ programming language. Additionally, during laboratory
sessions, students apply their gained knowledge and identify the
principles taught in the lectures by means of working on different
tasks and problems. Students are also allocated exercises during the
laboratories to improve both their individual skills and team work.
Eight of these exercises are submitted at the end of the laboratory
sessions. Moreover, two assignments are assigned to students to
further examine their practical capabilities in applying the taught
technologies. Finally, the course assessment is completed through a
three-hours final exam at the end of the semester.

Bibliography Textbooks:
1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in
C++”, Fourth Edition, 2014.
2. Thomas H. Cormen and Charles E. Leiserson, “Introduction to
Algorithms”, Third Edition (MIT Press), Jul 31, 2009.
References:
1. D. Dicheva, A. Hodge, C. Dichev, and K. Irwin, “On the Design of
an Educational Game for a Data Structures Course”, December
2016, DOI: 10.1109/TALE.2016.7851763, IEEE International
Conference on Teaching, Assessment, and Learning for
Engineering (TALE).
2. C++ reference — Data Structures — http://en.cppreference.com/w/
3. Learn C++ — Programming — http://www.learncpp.com/
Eight Laboratory exercises for a total of: 20%
Assessment ¢ g ry
¢ Two Assignments for a total of: 20%
e A three-hours Final Exam: 60%
Language English.



http://en.cppreference.com/w/
http://www.learncpp.com/

