Course Details

Course Information Package

Course Unit CodeESPLE722
Course Unit DetailsMEd Curriculum Development and Instruction (Specialization Electives) - MA Educational Sciences: Dynamic Learning Environments (Specialization Electives) -
Number of ECTS credits allocated10
Learning Outcomes of the course unitBy the end of the course, the students should be able to:
  1. Present the complementary interrelations which integrate mathematics with literature and explain the meaning of the concept “mathematical literature”
  2. Describe and justify the stages for the development of mathematical thinking and the impact of literature art on cognitive development.
  3. Use the opportunities for a deeper literary understanding that a formal and structural analysis of the literary text entails, an analysis facilitated by the teaching context that connects literature with mathematics.
  4. Evaluate the suitability of literature tools in order to teach mathematical concepts.
  5. Set up teaching situations that challenge students to creatively explore the narrative, rhetorical, formal and structural aspects of literary texts.
  6. Propose ways for incorporating children’s literature into the teaching of mathematics and evaluate them.
Mode of DeliveryFace-to-face
Recommended optional program componentsNONE
Course Contents

·    Recent emphasis on the teaching of mathematics.

·    The stages for the development of mathematical thinking.

·    Models for understanding literature.

·    Current educational priorities regarding the teaching of literature, particularly about skills required for an aesthetic and critical reception and understanding.

·    The interrelation of mathematics with children’s literature. The “mathematical literature”.

·    Literary concepts and procedures, thematic, rhetorical, narrative, formal etc., similar or comparable with mathematical concepts and / or processes.

·    The role of the literature language on understanding the mathematical language.

·    The role of the intuition in mathematics and in children’s literature.

·    The structure of the mathematical proof and the structure in literature. Similarities and differences.

·    The development of the fantasy, the creative thinking and the critical thinking. 

·    The project method as a teaching tool for interrelating mathematics and children’s literature.

·    Tools and methods for evaluating the suitability of the sources of children’s literature in order to use them in the teaching of mathematics.

Recommended and/or required reading:
  • Γιαννικοπούλου, Α. (2002). Λογοτεχνία και Μαθηματικά. Στο Καϊλά Μ. Καλαβάσης, Φ. και Πολεμικός Ν. (Επιμ.) Μύθοι, Μαθηματικά, Πολιτισμοί: Αποσιωπημένες Σχέσεις στην Εκπαίδευση, (σελ. 71-101). Αθήνα: Ατραπός.
  • Ward, R. (2008). Literature based activities for integrating mathematics with other content areas, Grades K-2.
  • Λαλαγιάννη, Κ. & Τριανταφυλλίδης, Τρ. Α. 2008. Μαθηματικές έννοιες και παραμυθιακές ιστορίες. Ενοποιητική σχέση και διδακτική πρόταση. Στο Νιφτανίδου, Χ. Μ. (επιμ.), Η διδασκαλία της λογοτεχνίας: Ιστορική και συγχρονική προοπτική. Πάτρα: Εκδόσεις Περί τεχνών. σελ. 105- 114.
  • Μητακίδου, Σ., & Τρέσσου, Ε.(2005). Διδάσκοντας Γλώσσα και Μαθηματικά με Λογοτεχνία. Θεσσαλονίκη: Εκδόσεις Επίκεντρο.
  • Παπαδάτος, Γ. Σ. & Πολίτης, Δ. 2007. Λογοτεχνία, μαθηματικά και φιλαναγνωσία. Στο Ά. Κατσίκη- Γκίβαλου & Τζ. Καλογήρου & Ά. Χαλκιαδάκη (επιμ.), Φιλαναγνωσία και σχολείο (σελ. 65- 79). Αθήνα: Πατάκης
  • Παπαρούση, Μ. (2005). Η δομή της λογοτεχνικής αφήγησης: Σκέψεις για μια διδακτική αξιοποίηση, Κείμενα , 2, 1- 11.
  • Πολίτης, Δ. (2009). Μαθηματικά και Λογοτεχνία για παιδιά. Η “κατάρα” της μαθηματικής σκέψης και η μυθοπλαστική υπέρβασή της. Στο Μαθηματικά και Ανθρωπιστικές Επιστήμες. Αθήνα: Κέντρο Έρευνας Επιστήμης και Εκπαίδευσης. 612-629.
  • Doxiadis, Ap. & Mazur, B. (2012, eds.). Circles Disturbed. The Interplay of Mathematics and Narrative. Princeton: Princeton University Press.
  • Jacobs, A., & Rak, S. (1997) Mathematics and Literature: A Winning Combination. Teaching Children Mathematics, 4:3, 156-157.
  • Leitze, R. (1997). Connecting Process Problem Solving to Children's Literature. Teaching Children Mathematics, 398-405.
  • Pope, R. 1995. Textual Ιntervention. Critical and Creative Strategies for Literary Studies, Routledge.
  • Schiro, M. (1997) Integrating Children's Literature and Mathematics in the Classroom. New York: Teacher's College Press.
  • Shatzer, J. (2008). Picture book power: connecting children’s literature and mathematics. The reading teacher, 61 (8), 649-653.
  • Sriraman, B., Freiman, V. & Liretter-Pitre, N. (2009, editors). Interdisciplinarity, creativity and learning Mathematics with literature, paradoxes, history, technology and modeling. Monograph in Mathematics Enthusiast.
Planned learning activities and teaching methodsThe theoretical part of the module (content of the taught concepts) is delivered by means of lectures, documentaries viewing and discussing as well as workshops engaging students in collaborative learning.
Assessment methods and criteria
Final Exam50%
Language of instructionGreek
Work placement(s)NO

 Εκτύπωση  Ηλεκτρονικό ταχυδρομείο